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The propagat ion  of discontinui ty waves of va r ious  o r d e r  in rheo log ica l  med ia  is examined. It is assumed 
that the reg ion  of discontinui ty of va lues  can be  r ep re sen t ed  by an in t e rmed ia t e  l a y e r  of inf in i tes imal  
th ickness .  By means  of this r ep re sen ta t ion ,  r e su l t s  can be obtained for  a r a t h e r  wide c l a s s  of continuous 
med ia  with v i scous  p r o p e r t i e s ,  which g e n e r a l i z e  Duhem's  r e su l t s .  The  f i r s t  in tegra ls  of the laws of 
momentum and energy conse rva t ion  a re  obtained, which hold inside the in t e rmed ia t e  l aye r  at a shock wave. 

It is shown that when v i scos i ty  e l emen t s  a r e  introduced in a spec ia l  way into the rheologica l  model of a 
continuous medium,  discontinui ty waves of any o r d e r  a r e  propagated  in the medium,  and that at the sur face  
of a s t rong  discontinuity in a hea t -conduct ing  medium,  the t e m p e r a t u r e  is continuous. Additional condit ions 
fo r  s t r a in  discont inui t ies  at the v i s cos i t y  e lements  a r e  obtained. F o r  ce r t a in  inclusions of the v i scos i ty  
e lements  into the rheo log ica l  model  discont inui ty  waves do not propagate;  instead the re  is m e r e l y  a weak 
discont inui ty  su r face  which acts  as an in te r face  between the flow reg ion  of the continuous medium and the 
reg ion  in the s ta te  of res t .  Contact  d iscont inui t ies  can occur  in any continuous medium.  

The poss ib le  ex i s tence  of a g e o m e t r i c a l  discontinui ty su r face  in a v iscous  gas was examined f i r s t  by 
Duhem [1]. He es tabl ished that s ingluar  s t rong-d iscont inu i ty  su r faces  cannot take p lace  in a v i scous  gas. 
However ,  if one a s sumes  that the ve loc i ty  and t e m p e r a t u r e  a r e  continuous in the passage  through a 
s ingular  sur face ,  only contact  d iscont inui t ies  a r e  poss ib le  [2]. 

1. All  the fol lowing cons idera t ions  will  r e f e r  to a r ec t angu la r  sys tem of Ca r t e s i an  coordinates  x i. Double 
subsc r ip t s  indicate  addition, while a subsc r ip t  behind a comma  means  pa r t i a l  d i f ferent ia t ion  with r e spec t  to the 

co r re spond ing  coordinate .  

Let  the theo log ica l  model  of a continuous medium R cons is t  of m e las t i c i ty  e lements  and n v i scos i ty  (V a) 
e l emen t s  which a r e  connected in s e r i e s  and in pa r a l l e l  in a ce r t a in  p r e s c r i b e d  o r d e r  [3]. The s t r e s s  t ensor  s. a. at a 1j a 
V a e l e m e n t  is r e l a t ed  to the s t r a in  r a t e  t ensor  e,,ij at this e lement  by the l inear  re la t ion  

where  ~a, ~a a r e  two v i scos i ty  coef f ic ien ts  which, as all  the o ther  phys ica l  coeff ic ients ,  a r e  assumed to be constant.  

It has been found that the v i scous  p r o p e r t i e s  of a continuous medium place  additional cons t ra in t s  on the 
propagat ion capabi l i ty  of discontinui ty waves .  In o r d e r  to d e t e r m i n e  these  cons t ra in t s ,  a s t rong-d iscont inu i ty  su r f ace  
of rheo log ica l  quant i t ies  is r ep laced  by an infini tely thin i n t e rmed ia t e  l aye r  of th ickness  2h. Inside the thin 
i n t e r m e d i a t e  l ayer ,  a continuous va r i a t ion  of the discontinuous quant i t ies  is subst i tuted fo r  a jumpwise  va r i a t ion  

(Fig. i). 

-h 

Fig .  1 

The ex i s t ence  of an in t e rmed ia t e  shock l aye r  is usual ly  a t t r ibuted [4, 5] to the d i s s ipa t ive  p rope r t i e s  of the 
med ium,  in the s ense  t h a t t h e y m a n i f e s t t h e m s e l v e s  s t rongly  only ins ide  the shoek l aye r  and a re  negl ig ible  in the flow 
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region of the medium beyond this layer .  

The d i s s ipa t ive  p r o p e r t i e s  of the medium can 
rheo log ica l  model  D, on which acts a s t r e s s  dij, to 

Fig.  2 

be desc r ibed  by connecting in pa ra l l e l  a ce r t a in  d i s s ipa t ive  

the bas ic  rheologica l  model  R (Fig. 2). 

We int roduce a mobi le  sy s t em of r ec tangu la r  coord ina tes  in such a way that its or ig in  moves  at a ve loc i ty  G 
together  with the discont inui ty  su r f ace  2. We d i rec t  the xa-axis  along the normal  to this su r face  at an a r b i t r a r y  m a s s  

point on Z. Then the x 1- and x2-axes come to l ie  in the p lane  tangential  to the discontinui ty surface .  Let  the Greek 
subse r ip t s  c~ and /3 take the values  1 and 2, and the Latin subscr ip t s  i, j, and k the values  1, 2, and 3. All quant i t ies  
a re  evaluated in a f ixed sys tem of coord ina tes  and a re  p ro jec ted  onto the axes of the mobi le  sys tem.  

In all the express ions  encountered,  we sepa ra t e  the de r iva t ives  of quant i t ies  along the normal  to the discontinui ty 
su r f ace  f r o m  the de r iva t ives  along the tangential  d i rec t ions ,  and subst i tute  a 5 -de r iva t i ve  [6] fo r  the par t i a l  de r iva t i ve  

with r e s p e c t  to t ime.  To this end we wr i te  the re la t ions  

0 --6~3 0 6. O 0 6 _ G  ~ (1.2) 

In a mobi le  sys tem of coord ina tes ,  with the aid of (1.2), we obtain the equations of mass  and motion conserva t ion  

fo r  a continuous medium,  r e spec t ive ly ,  in the fo rm 

5p 
{p (v~  - -  c ) } ,  ~ + ~ + (ov~), ~ = o ,  ( 1 . 3 )  

, 5 v i  
,o (v3 - - G )  vi, ~ + 9v~vi, ~ ~- p W = z~3, 3 + zi . . . .  (1.4) 

In a fixed sys tem of coordinates ,  we wr i t e  the f i r s t  and second laws of the rmodynamics  in the f o r m  

dU 
P~7 = • ~ + ~jv~, j + e (T), (1.5) 

a a b b • ~ 0, D~ = s~5~j ~ 0, D~ = t~j ~ ~ 0, (1.6) 
a ~ t ,  2 . . . . .  n ;  b ~ l ,  2 , . . . ,  p .  

where  p is the density,  v i is the ve loc i ty  of the medium pa r t i c l e s ,  aij a re  the s t r e s s e s  in the medium,  U is the 
in t r ins ic  energy,  T is the absolute t empera tu re ,  u is the the rmal  conductivity,  e is the intensi ty of ex terna l  heat  
sou rce s  which depend only on the t empera tu re ,  D a is the energy  diss ipat ion at v i scos i ty  e lements ,  D b is the energy  
diss ipat ion at p las t i c i ty  e lements ,  and p is the number  of p las t i c i ty  e lements .  

In a mobi le  sys tem of coord ina tes ,  with the aid of (1.2), the f i r s t  law of the rmodynamics  (1.5) can be wr i t ten  in 

the fo rm 

5U n ( T  ~ T ~ )  q- ~3v~ ,3 - v .~u i .~+  e(T) .  (1.7) O ( v ~ - - G )  U,~ §  ~ + o ~ f  = ,33 , , 

P r i o r  to p e r f o r m i n g  computat ions,  we make the assumpt ion that the quant i t ies  p, vi, U, T, and dij a r e  modulo 
l imi ted in the i n t e rmed ia t e  layer .  This applies  also to the s t ra in  t ensor  components at any e lement  of the rheologica l  
model  and to the f i r s t  invar iant  of the s t r e s s  tensor  at the p las t i c i ty  e l ements .  F r o m  the condition that the p r ope r t i e s  
of the medium which a re  desc r ibed  by an e l emen t  D vanish  beyond the in t e rmed ia t e  layer ,  there  follows the equali ty 

di; = d j  = 0 .  ( 1 . 8 )  

The plus and minus supe r sc r i p t s  imply that the cor responding  quantity is evaluated at the leading or  t r a i l ing  
shock f ront  of the in t e rmed ia t e  layer ,  r e spec t ive ly .  

gr The boundedness of dij is p roved  if the e lement  D is a v i scos i ty  element;  the boundedness of alI other  
quant i t ies  de r ives  f rom physical  cons idera t ions .  

*See A. D. Chernyshev,  Candidate ' s  thes is ,  Voronezh State Univers i ty ,  1966. 
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The s t r e s s - s t r a i n  t ensor  re la t ion  at e las t ic i ty  e lements  can be wr i t ten  in the f o r m  of a gene ra l i zed  Hooke 's  law 
[9]. A p r e s c r i b e d  p i e c e w i s e - s m o o t h  convex p las t i c i ty  condition [10] is a ssumed fo r  each p las t ic i ty  element .  

These  assumpt ions  (boundedness of the quant i t ies ,  a gene ra l i zed  t Iooke 's  law, and the comple teness  of the 
p las t i c i ty  conditions) lead to the boundedness of the s t r e s s e s  tij at the e las t ic i ty  and p las t ic i ty  e lements  inside the 
i n t e rmed ia t e  l ayer .  

By in tegra t ing  (1.3) a c r o s s  the in t e rmed ia t e  l a y e r  over  the xa-eoord ina te  f r o m  x 3 to h, we obtain 

h 

9 (v3- -G)  - -  P+ (Va+-- G) = .)tO ~ f~p -]- (pv~), ~} dx3 . (1.9) 
xa  

F r o m  the p r o p e r t i e s  of the 6--derivative with r e s p e c t  to t ime  and the par t ia l  de r iva t i ve s  with r e spec t  to the 
d i r ec t ions  in the plane tangent ial  to the discont inui ty  sur face  [6], on the bas is  of the assumpt ion  of the boundedness of 
quant i t ies  inside the i n t e rmed ia t e  l a y e r ,  it fol lows that the in tegrand in (1.9) is bounded inside the in te rmedia te  l ayer .  
Since the in tegra t ion  s tep is sma l l ,  and tends to zero  when h ~ 0 ,  f r o m  (1.9), to within smal l  va lues ,  we have 

P @3 - -  G) = p* (V,a " G). (1.10) 

The approx imate  re la t ion  (1.10), which is val id  inside the in t e rmed ia t e  l aye r ,  becomes  an exact  re la t ion  at the 
l im i t  for  h ~ 0. F o r  a one-d imens iona l  steady flow region,  this equation becomes  an exact one even for  h ~ 0. 
Equat ion (1.10) can be a lso  obtained d i r ec t ly  f r o m  the law of mass  conserva t ion  [4]. By evaluat ing the lef t -hand side of 
(1.10) for  x 3 = - h ,  we obtain the wel l -known discontinui ty re la t ion  [6] 

[,o (v~ --  6)] = 0. 

whe re  the b racke t s  indicate a jump of a quantity at the discontinui ty su r face .  

(1.11) 

In the same manner ,  by in tegra t ing (1.4) a c r o s s  the i n t e rmed ia t e  layer ,  on the bas i s  of ident ical  cons idera t ions ,  
we obtain, c o r r e c t  to within sma l l  va lues ,  the equali ty 

It 

61a - -  p+  (Va + - -  G )  v i = 6~3 + - -  p+  ( v a  + - -  G )  o i  + -~- f 6~a, ~ d x  a .  
xa 

(1.12) 

It will  be shown that the in tegra l  in the r igh t -hand s ide  of express ion  (1.12) is a sma l l  quantity. 

Taking a sec t ion  of the rheo log ica l  model  (Fig. 2), the total s t r e s s  ai j  inside the intermediate~ l aye r  may be 
r e p r e s e n t e d  in the fo rm of the sum of s~j s t r e s s e s  at n 1 v i scos i ty  e lements ,  and the sum of t~i s t r e s s e s  at m 1 e las t i c i ty  
and p las t i c i ty  e lements  which have come to l ie  in the sec t ion  chosen, added to dij: 

nl ~nl 

~ij-- ~si~-}-  ~ , t i~+di j ,  n l ~ . n ,  m l ~ m .  (1.13) 
a = l  b ~ l  

If the re  exis ts  even a s ingle sec t ion  of the theo log ica l  model  which does not i n t e r s e c t  a single v i scos i ty  
e lement ,  the inclusion of a sys tem of v i s cos i t y  e l emen t s  into the theo log ica l  model  will  be t e rmed  the internal  method. 
This,  fo r  example ,  is the case  fo r  a Maxwell ian body [9]. If an a r b i t r a r y  sect ion of the rheo log ica l  model  i n t e r sec t s  at 
l ea s t  one v i scos i ty  e lement ,  such an inclusion of a sys tem of v i scos i ty  e lements  into the rheo log ica l  model  will  be 
t e r m e d  the ex te rna l  method. In a Kelvin body, fo r  example,  the v i scos i ty  e lement  is included by the ex te rna l  method. 
It may be  a s sumed  that  when a sys t em of v i s c o s i t y  e lements  is included by the ex te rna l  method, t he re  will  exis t  an a a 

such that 

:~% ei~ =eij.  (1.14) 

The coeff ic ients  a a can take the values  0 and 1. Depending on the type of theo log ica l  model ,  s e v e r a l  combinat ions  
of a a va lues  a r e  poss ib le .  K a sys t em of v i s cos i t y  e lements  is included by the in terna l  method,  equali ty (1.14) is not 
valid.  In addition to the in ternal  and external  methods ,  the v i scos i ty  e l emen t s  can be connected in a k inemat i ca l ly  
dependent o r  k inemat i ea l ly  independent manner .  A connection of a sys tem of v i s cos i t y  e l emen t s  will  be t e r m e d  
k inemat i ea l ly  dependent,  ff t he r e  exis ts  between the s t ra in  r a t e s  at these  e lements  a re la t ionship  of the fo rm 
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z ~  ~..~ = 0. (1.15) 
~3 

The coeff ic ients  fia can take the va lues  0, 1, o r  - 1 .  A ve r s i on  of the dependent connect ion of v i s cos i t y  e l emen t s  

is shown in Fig.  3. F o r  this case ,  the k inemat ic  re la t ionsh ip  (1.15) has the f o r m  

ai~ ~ + a i r  -- ei/-- eij4 = O, i~ = l~ = -- B~ = -- ~ = 1 .  (I.16) 

The number  of k inemat ic  re la t ions  of the (1.15) type is equal to the number  of c losed c i r c u i t s  composed  of 
v i s c o s i t y  e l emen t s ,  such as shown in Fig.  3. It is these  c losed c i rcu i t s  that const i tu te  the n e c e s s a r y  cause for  the 
ex i s t ence  of r e l a t ions  of the (1.15) type. Rela t ions  {1.14) and (1.15) can be  t rea ted  as rheo tog iea l  r e l a t ions  of a 
k inemat ic  na tu re  for  a given continuous medium,  ff re la t ion  (1.15) is not fulf i l led,  the connect ion of the sys t em of 

v i s c o s i t y  e l emen t s  is k inemat ica l ly  independent. 

Fig.  3 

Let  us examine  the case  of an in terna l  inclusion of a sys tem of n v i s cos i t y  e l emen t s  into the rheo log iea l  model  of 
a continuous medium.  F o r  a sec t ion  that does not i n t e r sec t  any v i scos i ty  e l ements ,  we obtain f r o m  (1.13): 

~j = Y,t~ + d~j. (i. iV) 
b = l  

Since the ti% and dij s t r e s s e s  a r e  a s sumed  to be bounded inside the i n t e rmed ia t e  layer ,  the total  s t r e s s  aij  in the 
continuous med ium is also bounded. The in tegra t ion  step in (1.12) is sma l l  and, the re fore ,  the in tegra l  is a sma l l  
quantity in this case.  C o r r e c t  to smal l  quant i t ies ,  equali ty (1.12) has the f o r m  

~ i 3 - - ~  = P~ (v3+':--G) (vi - v~i ) .  (1.18) 

Evaluat ing the le f t -hand side of (1.18) at a given shock front ,  we obtain the well-known re l a t ion  in t e r m s  of 
jumps [6] 

[ o i ~ ]  = p§ @3 § - -  G) [ v J .  ( 1 . i 9 )  

In tegra t ing (1.5) a c r o s s  the i n t e rmed ia t e  l aye r  in the same  manner  as was done fo r  (1.3) and (1.4), and using 
f o r  this purpose  re la t ions  (1.10) and (1.18), with an accuracy  to within sma l l  quant i t ies ,  we obtain 

p+(v3 + - -  C) {U - -  U + - -  'Is (v~ - -  v~+) 2} = u (T, a - -  T, +) + ~ (vl, - -  v~+). (1.20) 

Equations (1.10), (1.18), and 0.20), a r e  the f i r s t  in tegra l s  of the equations of m a s s  and ve loc i ty  conse rva t ion  and 
of the f i r s t  law of the rmodynamics ,  r e spec t ive ly ,  which hold fo r  the i n t e rmed ia t e  l aye r  of a shock wave that p ropaga tes  
in a continuous medium.  Equation (1.10) has been obtained e a r l i e r ,  as we have stated; Eq. (1.18) was f i r s t  obtained in 
[1], while in tegra l  (1.20) is obtained here  fo r  the f i r s t  t ime.  In the spec ia l  case  in which the s t r e s s  t enso r  has only a 
hydros ta t i c  par t ,  these  equations were  known in [4]. By evaluat ing the l e f t -  and r ight -hand s ides  of (1.20), we obtain 
at the t ra i l ing  shock f ron t  the well-known exp re s s ion  fo r  the law of energy  conse rva t ion  in t e r m s  of jumps [8], 

p+(v3 + - -G)[U -]- v~ (vk + -  1/3 vk)] = • ~ ~ +  [v~] (1.21) 

It is noteworthy that at the l imit ,  fo r  h ~ 0, Eq. (1.10)-(1.12) as well  as {1.18)-(1.21) b e c o m e  exact  equat ions,  
s ince  the neg lec ted  t e r m s  tend to zero.  Thus,  f r o m  (1.12), we obtain 

h 

vi~ :dxa = 0 (1.22) lira 
h - - - ~  - - h  ' 

Let  us choose a sec t ion  of the rheo log iea l  model  which i n t e r sec t s  nl v i scos i ty  e l emen t s ,  and fo r  which re la t ion  
(1.13) holds. With the aid of (1.13) and (1.1), equal i ty  (1.22) reduces  to the f o r m  
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a ~ a ~ a ~ a ~b~7~. ~6~ + .~hbi~ ,~ 0, b~j lim f e4 jdxa .  (1.23) 
a = l  h ~ 0  - -~h 

If fo r  a sect ion of the rheological  model that does not in te r sec t  the v iscos i ty  e lements ,  Eq. {1.22) holds 
uncondit ional ly ,  for a sect ion that in te r sec t s  the v i scos i ty  e lements ,  re la t ions  (1.22) and (1.23) will no longer  hold 
uncondit ional ly.  In view of this, re la t ion  (1.23) const i tu tes  an additional cons t ra in t  that is placed on the s t r a in  
d i scont inu i t ies  at the v i scos i ty  e lements .  Besides  1.23, we obtain f rom (1.12) one other analogous cons t ra in t  on the 
s t r a i n  d i scont inu i t ies  at the v i scos i ty  e lements .  Let us integrate  (1.12) a c r o s s  the in te rmedia te  layer  f rom - h  to h for  
sect ion (1.13) and the pass  to the l imi t  for h--* 0. Taking (1.22) into cons idera t ion ,  at the l imi t  we obtain 

n l  

~b~-6ia + 2~hbi~ = 0. (1.24) 
a--~-]_ 

There  will be jus t  as many re la t ions  (1.23) and (1.24) as there  a re  sect ions of the rheologieal  model which 
i n t e r s ec t  the v i scos i ty  e lements .  It was found that the sum of such sect ions and re la t ions  (1.15) is equal to the number  
of v i scos i ty  e lements  in the rheological  model.  To prove this s ta tement ,  we use the assumpt ion  of the boundedness  of 
quant i t ies ,  together  with the ru les  of cons t ruc t ing  rheological  models .  

Among the six equations (1.23) and (1.24), one is an independent equation. Thus, by different ia t ing an equation 
f rom (1.24) with respec t  to the coordinate  x(~ for  i = (~, we a r r i v e  at an equation f rom (1.23) for  i = 3. A re la t ion can 
be obtained f rom the law of energy conserva t ion  (1.20). Integrat ing it with respec t  to x 3 f rom - h  to h, and pass ing  to 
the l imi t  for h ~ 0, we obtain the equality 

[T[ = 0. (1.25) 

Thus, in a heat -conduct ing  continuous medium with in terna l  inclusion of v iscos i ty  e lements ,  the t empera tu re  can 
not  to le ra te  a discont inui ty.  

Let us prove  that in addition to (1.25), f rom the laws of thermodynamics  one can obtain additional re la t ions  of 
the (1.24) type, which have the form 

b~t~ : [e~.~] : 0, (1.26) 
h h 

%a = O, c ~ ---- lira x~ ~ (ei~) dx3 .  (1.27) 
h - , q )  _ x 3  ~ 

To prove  re la t ions  (1.26) and (1 27), the s t r e s s  intensi ty  of a continuous medium,  which f igures  in the r ight -hand 
side of (1.5), is expressed  in the form of a sum 

a a b b ~r162 j = ~,stjeij 4- tijeij -}- di~vi, ~. (1.28) 
a ~ l L  b ~ l  

The c o r r e c t n e s s  of this express ion  can be es tabl ished by the induction method, with the aid of the ru les  for  
cons t rue t ing  rheological  models .  

We in tegra te  (1.28) ac ross  the in te rmedia te  l ayer  f rom x 3 to h, with the aid of (1.18), and we obtain 

n h 

a:l xa 
m h h 

+ Y, f I (1.29) 
b ~I x3 x~ 

We assume that the re la t ionship  between the s t r e s s  t ensors  eij a and s t r a in  ra te  tensors  is descr ibed  by one of the 
following express ions :  

e..  ~ Oei~ ~.~.= d ~  

e a ~ D e i j  " de'u t t a 
43 ~ = dt -~-2--er k - -Yh ,  j ) ' ~ - - 2 e j ~ ( v L k ' Y h ,  O" (1.30) 

Here D/Dt is a covar ian t  t ime  der iva t ive  in J a n m a n n ' s  [11] sense.  With the aid of (1.2), we wri te  the express ions  in 
(1.18) in a mobi le  sys tem of coordinates .  The max imum values of ]tijl and ]dijl will be expressed through mij ,  which 
are  bounded values .  Let us prove the boundedness  of the third integral  in the r ight -hand side of express ion  (1.29): 
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form 

h h 

x 3 x~ 

Similarly, we obtain for the second integral in the right-hand side of (1.29) the following expression 

h h 
b b m 

x~ x ,  

If we take the f i r s t  re la t ionship  in (1.30), we obtain for  the in tegra l  in (1.32) the express ion  

h 

b+) (1.33) 
f = + . . . . .  

xa 

For  the second re la t ionsh ip  in (1.30), with the aid of the mean-va lue  theorem,  this in tegra l  can be wr i t t en  in the 

h 

f e i ~ d z 3 ~ ( v ~ * ~ G x / e b + - - e  b,. , ' ]  ~,. i j  i j l  q . . . .  

$c z 

With the aid of the third re la t ionship  in (1.30), the integral  in (1.32) can be reduced to the form 

(1.345 

h 

ei~ ( j v;) -- 
xa 

(1.35) 

The e l l ips is  in express ions  (1.31) and (1.33)-(1.35) denotes t e r ms  which tend to zero when h ~ 0, while an 
a s t e r i sk  denotes the mean  value of a quantity in the in te rmedia te  layer .  By subst i tut ing success ive ly  {1.33)-(1.355 
into (1.32), we can prove that the las t  two in tegra ls  in (1.29) a re  modulo l imited everywhere  within the in t e rmed ia te  
layer .  Let us in tegra te  (1.29) ac ross  the in te rmedia te  layer  f rom - h  to h. Assuming  that all t e rms  in (1.29), with the 
exception of the f i r s t  in tegral  in the r ight -hand side, are  bounded, for h ~ 0 at the l imi t  we obtain 

n h h 

E, ,m 
a = 1  h ~ 0  --~h x~' i j  g i j  d ~ ~ 0 .  

(1.36) 

By v i r tue  of the second law of the rmodynamics  (1.6), 
case  in which equality (1.36) is valid,  with the aid of (1.1), we obtain the sys tem of equations 

all t e r m s  in (1.36) cannot be negative. Therefore ,  in the 

h h 

(~a @ 2/~na ) lim !h dx~ I (e~,~.)2 dx3 = O, 
h .-> O _ x~ 

h h 

(1.375 

(1.385 

Substi tut ing one of the express ions  for  the s t r a in  ra te  in t e rms  of the s t ra in  components f rom (1.30) into (1.37), 
we a r r i v e  at the re la t ions  

h h 
f ~ ~ 

lim I dx3I S : dx3=O. (1.39) h~~ x~ k 0--U-" ] 

If the f i r s t  re la t ionship  in (1.30) is used, then S = G 2, while for  the second and third re la t ions  we have S = (G - 
v3) 2. Here  S is a bounded quantity within the in te rmedia te  l ayer  in both eases ,  and hence, in accordance  with the 
m e a n - v a l u e  theorem,  can be removed f rom the in tegra l  sign. Then, in tegra t ing  by par t s  and making use  of the m e a n -  
value theorem,  express ion  (1.39) can be reduced to the form 

2 imp, i dx~ i (Oe":~':12dx'a=[e~](5--/,[ennl)=O,\~x~/ , a " . ' ,  a 
-h.  x~ " 

8 "  I a a+ a* , = {/2 (%k -- %~) -- %~} - (1.40) 

For  le~&l ~ 0, the quantity 5" depends on how the quanti ty e~k changes inside the in te rmedia te  layer ,  which can be 
adapted to a rapid change in ]e~kl by vary ing  the p roper t i e s  of the rheologieal  e lements .  It may be cons idered ,  
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therefore ,  that 

8, - V4[e~ ~] #: ,0, 

in which case,  however,  there  is a d i sc repancy  with equality (1.40). Hence we have a proof of express ion  (1.26). 

By repeat ing the computat ions which were used to obtain (1.36) f rom (1.27), equality (1.38) reduces with the aid 
of (1.28) to the form (1.29). 

Equations (1.26) and (1.27) const i tute addit ional  conditions for the propagat ion of shock waves in continuous media  
with viscous  proper t ies .  It is poss ib le  to complement  this system.  It has been stated that the number  of equations of 
the type (1.23t and (1.15) or  (1.24) and (1.15) is equal to the number  of v iscos i ty  e lements .  This  makes it poss ib le  by 
s imple  t r ans fo rma t ions  with the aid of (1.36) to reduce a sys tem of equations of the type of (1.24) and (1.15) to a closed 
sys tem of homogeneous l inear  equations with r e spec t  to the quanti t ies  ba~. By v i r tue  of the independence of this  sys tem 
of equations by definition, we obtain 

b~ : 0. (1.41) 

If the coupling of the v iscos i ty  e lements  in the rheological  model is k inemat ica l ly  independent,  the proof of the 
val idi ty  of (1.41) is obvious. 

F o r  a k inemat iea l ly  dependent coupling of the v i scos i ty  e lements ,  the scheme of the proof of equality (1.41) will 
be demons t ra ted  for  the case shown in Fig.  3. 

F o r  s impl ic i ty ,  it is a ssumed  that the e lements  A b which exper ience  the s t r e s s e s  tb~ consis t  of e las t ic i ty  and 
p las t ic i ty  e lements .  F o r  such a model,  we have the equal i t ies  

~3 

s 1 A- t~} = s .  ~. § t ~. ~ .~ t a (1.42) 

By in tegra t ing  (1.42) ac ross  the in t e rmed ia te  layer  for  f = 3, we obtain 

(~l~k~ - ~b~,~)~ ~3 + 2~1b~ - 2~b~  = 0, 

(~3b/~ - -  ~bk~ ) 8i3 -~ 2Tlab~3 - -  2~4bi43 = O. ( 1 . 4 3 )  

With the aid of (1.26), equal i t ies  (1.43) can be s implif ied to the fo rm 

Thbi~ - -  ~l~bi~ : 0,~ ~1~bi33 - -  ~4bi~ = O. ( 1 . 4 4 )  

We add to it an equation f rom (1.24) for a sect ion of the model which in t e r sec t s  the f i r s t  and third v iscos i ty  
e l ements  

mb~ § 713b~] = 0. (1.45) 

We obtain the closing equation in sys tem (1.44), (1.45) by in tegra t ing  (1.16) ac ross  the in te rmedia te  l aye r  for  

f =3 :  

b f ~ - ~ - b . 2 - - b  3 b 4 = O .  (1.46) 

The de t e rminan t  of sys tem (1.44)-(1.46) with respec t  to bia3 differs f rom zero, and therefore  ba 3 = 0; Q. E. D. 

F r o m  (1.23) and (1.15), it can be shown that  the equality 

[b~,~ ] :  0 (1.47) 

is fulfil led. 

The express ions  (1.41) and (1.47), just  as (1.27), p lace cons t ra in t s  on the d iscont inui t ies  of the s t r a in  tensor  
components  at the v iscos i ty  e lements  and the i r  der iva t ives  in d i rec t ions  tangential  to the discont inui ty  surface.  If the 
f i r s t  or  second express ion  for the s t r a in  ra te  t enso r  in t e rms  of the s t r a in  t enso r  is used in (1.30), then (1.27), (1.41), 
and (1.47) can be appreciably  s implif ied.  In this case,  in exactly the same m a n n e r  in which (1.26) was obtained f rom 
(1.37) and (1.27), we get 
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.[e~j~l O. (1.48) 

F r o m  (1.41) and (1.47), it fol lows that solution (1.48) also sa t i s f i e s  these  equations.  Thus, in the case  under  
cons idera t ion ,  the s t r a in  components  at all the v i scos i ty  e lements  a re  continuous at the shock wave surface.  

If the third exp re s s ion  fo r  the s t ra in  ra te  tensor  in t e r m s  of the s t ra in  t ensor  is used in (1.30), then in tegra l s  
(1.27), (1.41), and (1.47) cannot be evaluated,  owing to the p r e s e n c e  of nonl inear  t e r m s  which aceount fo r  the effect  of 

the rota t ion of the envi ronment  of the medium p a r t i c l e  under  study. 

Genera l ly  speaking, equali ty (1.48) is now no longer  valid,  so that the s t r a in  t ensor s  at the v i scos i ty  e lements  
a re  now discontinuous.  These d iscont inui t ies  a r e  p r e s e n t  owing to the nonl inear  t e r m s  in (1.30), and t h e r e f o r e  the fact  
that the jumps of le~jl d i f fer  f rom zero  at the shock wave su r f ace  should be t rea ted  as a secondary  effect.  

In the extension of an n-th o r d e r  weak discontinuity sur face ,  the density,  veloci ty ,  and the s t ra in  and s t r e s s  
components  at any e lement  of the theo log ica l  model ,  together  with the i r  de r iva t ives  down to the (n - 1)-th o r d e r  must  
be continuous. In o rde r  that the s t r a in - componen t  de r iva t ives  down to the (n - 1)-th o r d e r  be  continuous at an e lement  
V a, by v i r tue  of (1.1), the (n - 1 ) - t h - o r d e r  de r iva t ives  of the s t ra in  ra te  tensor  components  at the e lement  V a o r  the 
n - t h - o r d e r  de r iva t i ve s  of the s t r a in  t ensor  components  at this e lement  mus t  also be continuous. If a ce r t a in  sys tem 
of theo log ica l  e las t i c i ty  and p las t i c i ty  e l emen t s  is connected in pa ra l l e l  with a v i scos i ty  e lement  in the rheologiea l  
model ,  then the s t ra in  eomponents  and the i r  de r iva t ives  to the n - th  o r d e r  will  be continuous at this sys tem of e lements .  
Only the i r  h i g h e r - o r d e r  de r iva t ives  may be discontinuous.  In this ease  the discontinuity su r face  is t e rmed  neutral  [12] 

with r e s p e c t  to a sy s t em of rheologica l  e l emen t s  connected in pa r a l l e l  with a v i scos i ty  e lement .  

The propagat ion  of weak discont inui t ies  must  obey dynamic,  geome t r i ca l ,  and k inemat ic  conditions fo r  the 
compat ib i l i ty  of the d iscont inui t ies  of rheologica l  quant i t ies  [6]. As dis t inct  f r o m  weak discont inui t ies  at shock waves,  
condit ions (1.27), (1.28), and (1.47) mus t  be fulf i l led in addition to the a foresa id  conditions.  F o r  each exp re s s ion  fo r  
the s t r a in  r a t e  t ensor  in t e r m s  of the s t ra in  t ensor  in (1.30), the spher ica l  por t ion of the s t ra in  t ensor  at any v i scos i ty  
e l emen t  in the rheo log ica l  model  of a continuous medium is continuous at the shock wave. If the s t ra in  ra te  is defined 
by a pa r t i a l  o r  m a s s  t i m e - d e r i v a t i v e  of the s t ra ins ,  then f r o m  the additional condit ions,  it fol lows that at v i scos i ty  
e l ements ,  the s t r a in  components  a re  continuous at the shock wave. If, on the other  hand, the s t ra in  r a t e  is defined by 
a covar ian t  t i m e - d e r i v a t i v e  of the s t r a ins ,  then the s t r a ins  at the v i scos i ty  e lements  may- be discontinuous.  This may 

be t rea ted  as a secondary  effect. 

2. Let  one v i scos i ty  e l emen t  be included in the rheo log ica l  model  of a continuous medium by the externa l  rnethod, 
while the r ema in ing  (n - 1) e lements  const i tu te  a sy s t em connected by the internal  method. In this ease ,  the re  will  
ex i s t  a sec t ion  of the rheologica l  model  that i n t e r s ec t s  only the f i r s t  of all the v i s cos i t y  e lements .  Accord ing  to (1.13) 
and (1.14), the equali ty 

m 
b , 1 ~j = ~1e~5~ + 2~he~j + ~, t~j -r d~j, e~j =ei j  = 1/2 (v~, j + v~a), (2.1) 

b=l  

holds fo r  this sect ion.  

Now, it is no longer possible to obtain relation (1.23), since any section of the rheological model will intersect 

viscosity elements, while relations (1.12) and (1.24), where n i = i, remain valid, since they were derived from an 

arbitrary section. Substituting e[j into (1.24), we arrive at the equation 

o r  

~1 [V3] (~13 -]- 111 [7)i -~ V3613] = O, (2.2) 

(~I + 2111) [v31 = O, ~1 [v~] = O. (2 .3)  

In the general case for ~i > 0, from (2.3) we find that the velocity components are continuous at a strong 

discontinuity surface. From the continuity of the velocity follows the continuity of the distortion vector for v + ~ G and, 
hence, the continuity of the strain tensor. By virtue of (2.3), Eq. (1.19) can be simplified: 

[ ~ 3 ]  = O. (2 .4 )  
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Let  us a s s u m e  that  ff the s t r a in  t enso r  of a continuous medium is continuous, the s t ra in  t ensors  at any 
theo log ica l  e l emen t  a r e  also continuous. The same  applies  to tl/e continuity of the pa r t i a l  de r iva t ives  of the s t ra in  
t ensor s .  F r o m  (2.4), i t  fol lows that no dynamic fo rce s  a re  genera ted  at the discontinui ty surface .  If, in this case,  the 
s t r e s s  t enso r  components  at the p las t i c i ty  e lements  a re  discontinuous,  such su r faces  a re  e i ther  sl iding su r faces  [3, 6] 
o r  contac t  discont inui ty  sur faces .  These  su r faces  do not expand over  the medium.  By excluding such su r faces  f r o m  
the analys is ,  we au tomat ica l ly  pos tu la te  the continuity of s t r e s s e s  at the p las t ic i ty  e lements ;  i. e . ,  the s t r e s s  
components  at the e las t ic i ty  and p las t i c i ty  e lements ,  in this case,  a r e  continuous at the discontinuity sur face  under  
cons idera t ion .  If the assumed expanding sur face  is a shock wave, t he re  exis ts  an in t e rmed ia t e  l ayer  in which the 
med ium has the same  p r o p e r t i e s  as in the neighborhood of shock fronts .  Any quantity with a plus or  minus exponent 
can be  evaluated as the l imi t ing  value of this quantity inside the i n t e rmed ia t e  l aye r  in the neighborhood of the 
co r respond ing  shock front.  The re fo re ,  with the aid of (1.13), r e g a r d l e s s  of the s ta te  of the medium in front  and behind 
the shock wave, one can ca lcula te  f r o m  (2.4) the discontinui ty 

~ [vs,~] 6~3 + ~1 [v~,3 § v3,sSis] = O, (2.5) 

o r  

(~1 -~ 2111) [Vs,3] = O, Ill [Ya,3] = O. (2.6) 

With the aid of geome t r i ca l  conditions fo r  the compat ibi l i ty  of d iscont inui t ies ,  fo r  771 > 0, f r o m  (2.6) we find that 
the components  of the t ensor  vi, j a r e  continuous at the discontinui ty su r face  under  considerat ion.  This  means  that the 
densi ty  and s t r e s s  components  at all the e lements  a r e  continuous at the discont inui ty  surface .  Consequently,  E can be 
sole ly  a weak discontinui ty sur face .  F r o m  (2.3) o r  (2.6), it fol lows that an equivoluminal  s t rong or  weak discontinuity 
wave,  onwhich  iv3]= 0 o r  [v3,3] = 0, r e spec t ive ly ,  is only poss ib le  in the specia l  case  fo r  ~1 = 0. If (~ 1 + 2~?~) = 0 then, 
by v i r t ue  of the second law of the rmodynamics ,  it is n e c e s s a r y  that ~1 = ~71 = 0, which is equivalent  to the absence  of 
the f i r s t  v i s c o s i t y  e lement .  In this case ,  we a r r i v e  at the case  of an in ternal  inclusion of a sys tem of v i s cos i t y  

e l emen t s  in the rheologica l  model ,  which was examined in the p rev ious  paragraph .  

Until now the r e su l t s  obtained in this  pa rag raph  w e r e  independent of whether  the continuous medium is in a s ta te  
of f low at both s ides  of the discontinui ty su r f ace  o r  only at one of its s ides.  In the fol lowing analysis ,  however ,  this 

ques t ion  is of g r ea t  impor tance .  

Let  the medium be in a s ta te  of flow at both s ides  of the discontinuity su r f ace  and, hence,  re ta in  its 
c h a r a c t e r i s t i c s  in the passage  through this sur face .  In this case,  Eq. (1.13), where  n 1 = 1, continues to hold at both 
s ides  of a given discontinui ty sur face .  By subst i tut ing (1.13) into the equation of mot ion (1.4) and evaluat ing the 
discontinui ty p r o c e d u r e  f r o m  this equation with al lowance fo r  (2.3) and (2.6), we a r r i v e  at the equation 

~[%,~l~s + ~l[v~,sa -t- %,33 ~ ]  = 0. (2.7) 

With the aid of the g e o m e t r i c a l  conditions fo r  the compat ib i l i ty  of d iscont inui t ies ,  f r o m  (2.7) we find that fo r  
71 > 0, the ve loc i ty  and all  its f i r s t  and second de r iva t ives  a r e  continuous at the a s sumed  discontinuity surface .  By 
definit ion,  it fol lows f r o m  he re  that the s t ra in  t ensor s  at all the rheologica l  e lements  a r e  continuous and also the 
s t r e s s  t enso r s  and thei r  f i r s t  de r iva t i ve s  a r e  continuous at the e las t ic i ty  and p las t i c i ty  e lements .  By succe s s ive ly  
d i f fe ren t ia t ing  (1.44) s eve ra l  t imes ,  each t ime evaluat ing the discontinui ty p r o c e d u r e  with al lowance fo r  (1.13), (2.3), 
and (2.6) and for  analogous new re la t ions ,  we find that the densi ty and the veloci ty ,  including all its de r iva t ives ,  a re  

continuous at the a s sumed  discontinui ty sur face .  

Then, by definition, the s t ra in  and s t r e s s  t ensors ,  together  with al l  the i r  de r iva t ives ,  a re  continuous at all the 
rheo log ica l  e l ements ,  i . e . ,  t he re  can be no extension of a discontinui ty su r f ace  of any o r d e r  in the case  under 

cons idera t ion .  

If the medium is in a s ta te  of flow only at one s ide of the discontinui ty sur face ,  the p r o p e r t i e s  of the medium 
man i f e s t  t h e m s e l v e s  only at that s ide and in the i n t e rmed ia t e  layer .  At the o ther  side of the discontinuity sur face ,  the 
med ium exhibits  o ther  p r o p e r t i e s ,  accord ing  to o ther  governing  equations.  F r o m  here ,  it fol lows that the re  is l i t t le  
s ense  in evaluat ing the discontinuity p r o c e d u r e  f r o m  Eq. (1.13) and f r o m  the de r iva t ives  of this equation. In view of 
this ,  only condit ions (2.2) and (2.5), obtained as a r e s u l t  of the introduct ion of an in t e rmed ia t e  layer ,  continue to be 
valid.  Conditions (2.7) and all  the subsequent  in fe rences  hold no longer.  Thus,  in this case ,  the propagat ion of weak 
d iscont inui t ies ,  which fo rm an in t e r f ace  between the f low reg ion  of a v i scous  continuous medium and the stable 
reg ion  [13] can occur .  On these  su r faces ,  the veloci ty ,  density,  de format ion  of the medium,  and all  the f i r s t  
d e r i v a t i v e s  of these  quanti t ies  a re  continuous.  F o r  ~t = 0, an equivoluminal  discontinui ty su r face  of a r b i t r a r y  o r d e r  
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can also take place. 

It is obvious that (1.25) r e m a i n s  in force,  i .e. ,  the t e mpe r a t u r e  cannot be discontinuous in a heat-conduct ing con-  

t inuous medium. 

K G = v +, even under  the condit ion that s t r a in  and s t r e s s  t ensor  components at all the theological  e lements  a re  
continuous,  we find f rom (1.8) that a densi ty  discont inui ty  is poss ible ,  i. e . ,  that contact d iscont inui t ies  can occur  for  
any type of inc lus ion  of v i scos i ty  e lements  into the rheological  model of a continuous medium. 
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