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The propagation of discontinuity waves of various order in rheological media is examined. It is assumed
that the region of discontinuity of values can be represented by an intermediate layer of infinitesimal
thickness. By means of this representation, results can be obtained for a rather wide class of continuous
media with viscous properties, which generalize Duhem's results. The first integrals of the laws of
momentum and energy conservation are obtained, which hold inside the intermediate layer at a shock wave.

It is shown that when viscosity elements are introduced in a special way into the rheological model of a
continuous medium, discontinuity waves of any order are propagated in the medium, and that at the surface
of a strong discontinuity in a heat-conducting medium, the temperature is continuous. Additional conditions
for strain discontinuities at the viscosity elements are obtained. For certain inclusions of the viscosity
elements into the rheological model discontinuity waves do not propagate; instead there is merely a weak
discontinuity surface which acts as an interface between the flow region of the continuous medium and the
region in the state of rest. Contact discontinuities can occur in any continuous medium.

The possible existence of a geometrical discontinuity surface in a viscous gas was examined first by
Duhem [1]. He established that singluar strong-discontinuity surfaces cannot take place in a viscous gas.
However, if one assumes that the velocity and temperature are continuous in the passage through a
singular surface, only contact discontinuities are possible [2].

1. All the following considerations will refer to a rectangular system of Cartesian coordinates x;. Double
subscripts indicate addition, while a subscript behind a comma means partial differentiation with respect to the
corresponding coordinate.

Let the rheological model of a continuous medium R consist of m elasticity elements and n viscosity (Vy)
elements which are connected in series and in parallel in a certain prescribed order [3]. The stress tensor S?j at a
V, element is related to the strain rate tensor s?j at this element by the linear relation

8i5 = Eabrlyy + 21T (e=1, 2,...,n), » (1.1)
where £, n, are two viscosity coefficients which, as all the other physical coefficients, are assumed to be constant.

1t has been found that the viscous properties of a continuous medium place additional constraints on the
propagation capability of discontinuity waves. In order to determine these constraints, a strong-discontinuity surface
of rheological quantities is replaced by an infinitely thin intermediate layer of thickness 2h. Inside the thin
intermediate layer, a continuous variation of the discontinuous quantities is substituted for a jumpwise variation
(Fig. 1).
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Fig. 1

The existence of an intermediate shock layer is usually attributed [4, 5] to the dissipative properties of the
medium, in the sense thatthey manifestthemselves strongly only inside the shock layer and are negligible in the flow
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region of the medium beyond this layer.

The dissipative properties of the medium can be described by connecting In parallel a certain dissipative
rheological model D, on which acts a stress dij’ to the basic rheological model R (Fig. 2).

Fig. 2

We introduce a mobile system of rectangular coordinates in such a way that its origin moves at a velocity G
together with the discontinuity surface £. We direct the x3-axis along the normal to this surface at an arbitrary mass
point on Z. Then the x4- and xy~axes come to lie in the plane tangential to the discontinuity surface. Let the Greek

subscripts « and 8 take the values 1 and 2, and the Latin subscripts i, j, and k the values 1, 2, and 3. All quantities
are evaluated in a fixed system of coordinates and are projected onto the axes of the mobile system.

In all the expressions encountered, we separate the derivatives of quantities along the normal to the discontinuity
surface from the derivatives along the tangential directions, and substitute a 6-derivative [6] for the partial derivative
with respect to time. To this end we write the relations

3 2 3 ) 3
gi‘zéia-@;"}- 6i“6—w;’ E:&~G¢%§‘ {1.2)

In a mobile system of coordinates, with the aid of (1.2), we obtain the equations of mass and motion conservation

for a continuous medium, respectively, in the form

Pvs— G s+ 2+ {pva) 2 = 0, (1.3)
p(v3——G)Ui,3+puavi,d+p%:5i3,3+5m,a. (1.4)
In a fixed system of coordinates, we write the first and second laws of thermodynamics in the form
P%Zﬂwmr¥%md+EWL (1.5)
x>0, Dy=sfei>0, Dy=tjel>0, (1.6)
a=1,2...,nb=1,2 ..., p.

where p is the density, v; is the velocity of the medium particles, ojj are the stresses in the medium, U is the
intrinsic energy, T is the absolute temperature, » is the thermal conductivity, e is the intensity of external heat
sources which depend only on the temperature, Da is the energy dissipation at viscosity elements, Dy is the energy

dissipation at plasticity elements, and p is the number of plasticity elements.

In a mobile system of coordinates, with the aid of (1.2), the first law of thermodynamics (1.5) can be written in
the form

p(vs—G)U,5 +PUaU,a+P%:%(T, 33 = T aa) + G305, 3 + Siali, e+ & (T). (L.7)

Prior to performing computations, we make the assumption that the quantities p, v;, U, T, and dij are modulo
limited in the intermediate layer. This applies also to the strain tensor components at any element of the rheological
model and to the first invariant of the stress tensor at the plasticity elements. From the condition that the properties
of the medium which are described by an element D vanish beyond the intermediate layer, there follows the equality

dif =dij = 0. (1.8)

The plus and minus superscripts imply that the corresponding quantity is evaluated at the leading or trailing
shock front of the intermediate layer, respectively.

The boundedness of d;; is proved* if the element D is a viscosity element; the boundedness of all other
quantities derives from physical considerations.

*See A. D. Chernyshev, Candidate's thesis, Voronezh State University, 1966.
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The stress-strain tensor relation at elasticity elements can be written in the form of a generalized Hooke's law
[9]. A prescribed piecewise-smooth convex plasticity condition [10] is assumed for each plasticity element.

These assumptions (boundedness of the quantities, a generalized Hooke's law, and the completeness of the

plasticity conditions) lead to the boundedness of the stresses tij at the elasticity and plasticity elements inside the
intermediate layer.

By integrating (1.3) across the intermediate layer over the x;~coordinate from x; to h, we obtain

h
¢ 8
01— ) —p* (03" — 0) = {[& 1 (pva),of . (1.9)
From the properties of the é-derivative with respect to time and the partial derivatives with respect to the
directions in the plane tangential to the discontinuity surface [6], on the basis of the assumption of the boundedness of
quantities inside the intermediate layer, it follows that the integrand in (1.9) is bounded inside the intermediate layer.
Since the integration step is small, and tends to zero when h —0, from (1.9), to within small values, we have

p (v — G) = p" (0,3 — G). (1.10)

The approximate relation (1.10), which is valid inside the intermediate layer, becomes an exact relation at the
limit for h — 0. For a one-dimensional steady flow region, this equation becomes an exact one even for h = 0.
Equation (1.10) can be also obtained directly from the law of mass conservation [4]. By evaluating the left-hand side of
(1.10) for x3 =—h, we obtain the well-known discontinuity relation [6]

Ip (vy — G)] = 0. 1.11)

where the brackets indicate a jump of a quantity at the discontinuity surface.

In the same manner, by integrating (1.4) across the intermediate layer, on the basis of identical considerations,
we obtain, correct to within small values, the equality

h
Gz — p+ (U3+ ——G) U; = i3+ — p+ (U3+ — G) Ui+ -+ S Gia, a.dlv‘s- (1.12)

X3

It will be shown that the integral in the right~hand side of expression (1.12) is a small quantity.

Taking a section of the rheological model (Fig. 2), the total stress ¢;; inside the intermediate layer may be
represented in the form of the sum of s;l- stresses at ny viscosity elements, and the sum of tli)j stresses at m, elasticity
and plasticity elements which have come to lie in the section chosen, added to dij:

oy = D8] + Db+ dij, R, My m. (1.13)
a=1 b=1
If there exists even a single section of the rheological model which does not intersect a single viscosity

element, the inclusion of a system of viscosity elements into the rheological model will be termed the internal method.
This, for example, is the case for a Maxwellian body [9]. I an arbitrary section of the rheological model intersects at
least one viscosity element, such an inclusion of a system of viscosity elements into the rheological model will be
termed the external method. In a Kelvin body, for example, the viscosity element is included by the external method.
It may be assumed that when a system of viscosity elements is included by the external method, there will exist an o,
such that

Sa_ef=e,. (1.14)

a”ij T i

The coefficients ¢, can take the values 0 ard 1. Depending on the type of rheological model, several combinations
of o, values are possible. If a system of viscosity elements is included by the internal method, equality (1.14) is not
valid. In addition to the internal and external methods, the viscosity elements can be connected in a kinematically
dependent or kinematically independent manner. A connection of a system of viscosity elements will be termed
kinematically dependent, if there exists between the strain rates at these elements a relationship of the form
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28,85 =0. (1.15)
The coefficients B, can take the values 0, 1, or —1. A version of the dependent connection of viscosity elements -
is shown in Fig., 3. For this case, the kinematic relationship (1.15) has the form

Bl e —af—eft =0, Pi=Ph=—PB=—f =1’ (1.16)

The number of kinematic relations of the (1.15) type is equal to the number of closed circuits composed of
viscosity elements, such as shown in Fig. 3. It is these closed circuits that constitute the necessary cause for the
existence of relations of the (1.15) type. Relations (1.14) and (1.15) can be treated as rheological relations of a
kinematic nature for a given continuous medium. I relation (1.15) is not fulfiiled, the connection of the system of
viscosity elements is kinematically independent.
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Fig. 3

Let us examine the case of an internal inclusion of a system of n viscosity elements into the rheological model of
a continuous medium. For a section that does not intersect any viscosity elements, we obtain from (1.13):

ma
oy = Nt +dy;. (1.1
b=1

Since the t]?j and dij stresses are assumed to be bounded inside the intermediate layer, the total stress oiy in the
continuous medium is also bounded. The integration step in (1.12) is small and, therefore, the integral is a small
quantity in this case. Correct to small quantities, equality (1.12) has the form

Si3—— 03 = p* (v3" — @) (v — v1). {1,18)

Evaluating the left-hand side of (1.18) at a given shock front, we obtain the well-known relation in terms of
jumps [6]

[0:s] = 0% (" — G) [wil. (1.19)

Integrating (1.5) across the intermediate layer in the same manner as was done for (1.3) and (1.4), and using
for this purpose relations (1.10) and (1.18), with an accuracy to within small quantities, we obtain

Pt — QY (U —U* — Yy (g — )% = % (T, s — T,5) + o3 (Vs — 0c*). (1.20)

Equations (1.10), (1.18), and (1.20) are the first integrals of the equations of mass and velocity conservation and
of the first law of thermodynamics, respectively, which hold for the intermediate layer of a shock wave that propagates
in a continuous medium. Equation (1.10) has been obtained earlier, as we have stated; Eq. (1.18) was first obtained in
[1], while integral (1.20) is obtained here for the first time. In the special case in which the stress tensor has only a
hydrostatic part, these equations were known in [4]. By evaluating the left- and right-hand sides of (1.20), we obtain
at the trailing shock front the well~known expression for the law of energy conservation in terms of jumps [8],

P (vs" — GYU + vy (0" — Y2 va)] = %[ T 5] + 0ps” [l (1.21)

It is noteworthy that at the limit, for h — 0, Eq. (1.10)—(1.12) as well as (1.18)—(1.21) become exact equations,
since the neglected terms tend to zero. Thus, from (1.12), we obtain

h
lim \ o4z, udzy = 0 (1.22)

ho0 Ly

Let us choose a section of the rheological model which intersects n; viscosity elements, and for which relation
(1.13) holds. With the aid of (1.13) and (1.1), equality (1.22) reduces to the form
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7y h

Debif odia + 2%« =0, b2 = lim \ &dz,. (1.23)

a=1 h—o *h

If for a section of the rheological model that does not intersect the viscosity elements, Eqg. (1.22) holds

unconditionally, for a section that intersects the viscosity elements, relations (1.22) and (1.28) will no longer hold
unconditionally. In view of this, relation (1.23) constitutes an additional constraint that is placed on the strain
discontinuities at the viscosity elements. Besides 1.23, we obtain from (1.12) one other analogous constraint on the
strain discontinuities at the viscosity elements. Let us integrate (1.12) across the intermediate layer from —h to h for
section (1.13) and the pass to the limit for h— 0. Taking (1.22) into consideration, at the limit we obtain

ny

D Ebiidis + 2gbis = 0. (1.24)

a=1
There will be just as many relations (1.23) and (1.24) as there are sections of the rheological model which
intersect the viscosity elements. It was found that the sum of such sections and relations (1,15) is equal to the number
of viscosity elements in the rheological model. To prove this statement, we use the assumption of the boundedness of
quantities, together with the rules of constructing rheological models.

Among the six equations (1.23) and (1.24), one is an independent equation. Thus, by differentiating an equation
from (1.24) with respect to the coordinate x,, for i = &, we arrive at an equation from (1.23) for i = 3, A relation can
be obtained from the law of energy conservation (1.20). Integrating it with respect to x; from —h to h, and passing to
the limit for h — 0, we obtain the equality

x[T] = 0. (1.25)

Thus, in a heat~conducting continuous medium with internal inclusion of viscosity elements, the temperature can
not tolerate a discontinuity.

Let us prove that in addition to (1.25), from the laws of thermodynamics one can obtain additional relations of
the (1.24) type, which have the form

by = [exe]l = 0, (1.26)
h
=0,  cf=lim de3 5(3”) dzs. (1.27)

To prove relations (1.26) and (1 27), the stress intensity of a continuous medium, which figures in the right-hand
gside of (1.5), is expressed in the form of a sum

n
Giviyi = Dysied + Z tije + dijvi, 5. (1.28)
a=1

b=l
The correctness of this expression can be established by the induction method, with the aid of the rules for
constructing rheological models.

We integrate (1.28) across the intermediate layer from x3 to h, with the aid of (1.18), and we obtain

n h

oyt [v] — p* (v5" —G) l:vk (vh‘f' ___;_ vk):f = 2 S Si]’ ij dzg -

a=] Xs
+ 2 S 1584  das -

b=1 %5
We assume that the relationship between the stress tensors eij® and strain rate tensors is described by one of the
following expressions:

d.o.  dag. (1.29)

1710
3

5!{/‘;;-

a_aei? o dei;.’
&5 = 8t * &= Tdt
De.. de,. 1 1
'L] 1.7
Si=Dr = toear@ =) trei i—2 ). (1.30)

Here D/Dt is a covariant time derivative in Jaumamn's [11] sense. With the aid of (1.2), we write the expressions in
(1.18) in a mobile system of coordinates. The maximum values of Itijf and ]dijl will be expressed through mjj, which
are bounded values. Let us prove the boundedness of the third integral in the right-hand side of expression (1.29):
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=g |7 = (1.31)

LMy,

h
‘S d”vl ;%3 i

x3

PR £
”1,Jd3

R =

3

Similarly, we obtain for the second integral in the right-hand side of (1.29) the following expression

h
\ 2 das). (1.32)

h
S t“s” dzs[ m;
X3 X3

If we take the first relationship in (1.30), we obtain for the integral in (1.32) the expression

h
S el dry=G (e~ el + .. (1.33)
For the second relationship in (1.30), with the aid of the mean-value theorem, this integral can be written in the
form

h
{eddm= (o~ @)l —e+ .. .. (1.34)

With the aid of the third relationship in (1.30), the integral in (1.32) can be reduced to the form

h
I b by b*
B g dag = (v3* — G) (eij+ - 91'7') + e, (Vf - ”j) -

Xy

— 3ol (0,7 — 0,) 85 Vol (0, — 7)) — a0t — 0,) By . . (1.35)

The ellipsis in expressions (1.31) and (1.33)—(1.35) denotes terms which tend to zero when h — 0, while an
asterisk denotes the mean value of a quantity in the intermediate layer. By substituting successively (1.33)—(1.35}
into (1.32), we can prove that the last two integrals in (1.29) are modulo limited everywhere within the intermediate
layer. Let us integrate (1.29) across the intermediate layer from —h to h, Assuming that all terms in (1.29), with the
exception of the first integral in the right-hand side, are bounded, for h — 0 at the limit we obtain

3

@ Gy = 0. (1.36)

1] l]

8:/.):‘

&

h
lim S dxy
a h —h

I

By virtue of the second law of thermodynamics (1.6), all terms in (1.36) cannot be negative. Therefore, in the
case in which equality (1.36) is valid, with the aid of (1.1), we obtain the system of equations

h h
(, + 2/3-%) Iim K dig S (s}'%)i dwg = 0, (1.37)
" A -h xg i
e lim 5 dxsgc (s — 5o 1,) dos = 0. (1.38)

3

Substituting one of the expressions for the strain rate in terms of the strain components from (1.30) into (1.37),
we arrive at the relations

lim
h—>0

L
2,

A ﬁeh_% 2 .
s S( al:,, ) dus = 0. (1.39)
If the first relationship in (1.30) is used, then 8 = G%, while for the second and third relations we have 8 = (G —
v3)2. Here S is a bounded quantity within the intermediate layer in both cases, and hence, in accordance with the

mean-value theorem, can be removed from the integral sign. Then, integrating by parts and making use of the mean-
value theorem, expression (1.39) can be reduced to the form

h h

Be}g 2 .
lim S dan < = > dug = [e,5] (8% —a [enn)) =10

h—a
—h Xy

8% = {12 (e — o) — i ). (1.40)

For lekk' = 0, the quantity 6 * depends on how the quantity ekk changes inside the intermediate layer, which can be
adapted to a rapid change in lekkl by varying the properties of the rheological elements. It may be considered,
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therefore, that
6% — Yalenn®l :f’:,O’

in which case, however, there is a discrepancy with equality (1.40). Hence we have a proof of expression (1.26),

By repeating the computations which were used to obtain (1.36) from (1.27), equality (1.38) reduces with the aid
of (1.28) to the form (1.29).

Equations (1.26) and (1.27) constitute additional conditions for the propagation of shock waves in continuous media
with viscous properties. It is possible to complement this system. It has been stated that the number of equations of
the type (1.23) and (1.15) or (1.24) and {1.15) is equal to the number of viscosity elements. This makes it possible by
simple transformations with the aid of (1.36) to reduce a system of equations of the type of (1.24) and (1.15) to a closed
system of homogeneous linear equations with respect to the quantities b%. By virtue of the independence of this system
of equations by definition, we obtain

bl = 0. (1.41)

If the coupling of the viscosity elements in the rheological model is kinematically independent, the proof of the
validity of (1.41) is obvious.

For a kinematically dependent coupling of the viscosity elements, the scheme of the proof of equality (1.41) will
be demonstrated for the case shown in Fig. 3.

For simplicity, it is assumed that the elements A, which experience the stresses b consist of elasticity and

)
plasticity elements. For such a model, we have the equalities

1 1__ .2 2 a 2 __ 4 4
syt ti=sit ol st ii=si+t ) (1.42)

By integrating (1.42) across the intermediate layer for f = 3, we obtain

(Eabyy — Eobyy)) 85 -+ 2mbj} — 2n3b,5 =0,

(Eabyy — Eabyg) 85 -+ 2Maby — 2maby§ = 0. (1.43)
With the aid of (1.26), equalities (1.43) can be simplified to the form

Tllbi; — ’qzbig = 0,' T}3bi§ —_ '14bi§ =0. (1.4:4)

We add to it an equation from (1.24) for-a section of the model which intersects the first and third viscosity
elements

b3 + b 3 = 0. (1.45)

We obtain the closing equation in system (1.44), (1.45) by integrating (1.16) across the intermediate layer for
f =3
byt bi—55—5%=0. (1.46)

The determinant of system (1.44)~(1.46) with respect to bia3 differs from zero, and therefore b?s =0; Q. E.D.
From (1.23) and (1.15), it can be shown that the equality
lbeas | =0 (1.47)
is fulfilled.

The expressions (1.41) and (1.47), just as (1.27), place constraints on the discontinuities of the strain tensor
components at the viscosity elements and their derivatives in directions tangential to the discontinuity surface. If the
first or second expression for the strain rate tensor in terms of the strain tensor is used in (1.30), then (1.27), (1.41),
and (1.47) can be appreciably simplified. In this case, in exactly the same manner in which (1.26) was obtained from
(1.37) and (1.27), we get
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le*1=0- (1.48)

From (1.41) and (1.47), it follows that solution (1.48) also satisfies these equations, Thus, in the case under
consideration, the strain components at all the viscosity elements are continuous at the shock wave surface,

If the third expression for the strain rate tensor in terms of the strain tensor is used in (1.30), then integrals
(1.27), (1.41), and (1.47) cannot be evaluated, owing to the presence of nonlinear terms which account for the effect of
the rotation of the environment of the medium particle under study.

Generally speaking, equality (1.48) is now no longer valid, so that the strain tensors at the viscosity elements
are now discontinuous. These discontinuities are present owing to the nonlinear terms in (1.30), and therefore the fact
that the jumps of |e?j| differ from zero at the shock wave surface should be treated as a secondary effect.

In the extension of an n-th order weak discontinuity surface, the density, velocity, and the strain and stress
components at any element of the rheological model, together with their derivatives down to the (n — 1)-th order must
be continuous. In order that the strain-component derivatives down to the (n — 1)-th order be continuous at an element
V. by virtue of (1.1), the (n — 1)~th-order derivatives of the strain rate tensor components at the element V, or the
n-th-order derivatives of the strain tensor components at this element must also be continuous. If a certain system
of rheological elasticity and plasticity elements is connected in parallel with a viscosity element in the rheological
model, then the strain components and their derivatives to the n~th order will be continuous at this system of elements.
Only their higher-order derivatives may be discontinuous. In this case the discontinuity surface is termed neutral [12]
with respect to a system of rheological elements connected in parallel with a viscosity element.

The propagation of weak discontinuities must obey dynamic, geometrical, and kinematic conditions for the
compatibility of the discontinuities of rheological quantities {6]. As distinct from weak discontinuities at shock waves,
conditions (1.27), (1.28), and (1.47) must be fulfilled in addition to the aforesaid conditions. For each expression for
the strain rate tensor in terms of the strain tensor in (1.30), the spherical portion of the strain tensor at any viscosity
element in the rheological model of a continuous medium is continuous at the shock wave. If the strain rate is defined
by a partial or mass time-derivative of the strains, then from the additional conditions, it follows that at viscosity
elements, the strain components are continuous at the shock wave. If, on the other hand, the strain rate is defined by
a covariant time-derivative of the strains, then the strains at the viscosity elements may be discontinuous. This may
be treated as a secondary effect.

2. Let one viscosity element be included in the rheological model of a continuous medium by the external method,
while the remaining (n — 1) elements constitute a system connected by the internal method. In this case, there will
exist a section of the rheological model that intersects only the first of all the viscosity elements. According to (1.13)
and (1.14), the equality

65 = Eaeuadyy -+ 212y + Zti? + dij, &5 =5 = Ya vy, 5 + Vig), (2.1)
b=1 .
holds for this section,

Now, it is no longer possible to obtain relation (1.23), since any section of the rheological model will intersect
viscosity elements, while relations (1.12) and (1.24), where n; = 1, remain valid, since they were derived from an
arbitrary section. Substituting 51”- into (1.24), we arrive at the equation

81 los) 85 + g foy + wsdy5l = 0, (2.2)

or
(€1 4 2ny) [wg] = 0, n, [va] = 0. (2.3)

In the general case for n; > 0, from (2.3) we find that the velocity components are continuous at a strong
discontinuity surface. From the continuity of the velocity follows the continuity of the distortion vector for v}l; # G and,
hence, the continuity of the strain tensor. By virtue of (2.3), Eq. (1.19) can be simplified:

[6:5] = 0. (2.4)
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Let us assume that if the strain tensor of a continuous medium is continuous, the strain tensors at any
rheological element are also continuous. The same applies to the continuity of the partial derivatives of the strain
tensors. From (2.4), itfollows that no dynamic forces are generated at the discontinuity surface. If, in this case, the
stress tensor components at the plasticity elements are discontinuous, such surfaces are either sliding surfaces [3, 6]
or contact discontinuity surfaces. These surfaces do not expand over the medium. By excluding such surfaces from
the analysis, we automatically postulate the continuity of stresses at the plasticity elements; i. e., the stress
components at the elasticity and plasticity elements, in this case, are continuous at the discontinuity surface under
consideration. ¥ the assumed expanding surface is a shock wave, there exists an intermediate layer in which the
medium has the same properties as in the neighborhood of shock fronts. Any quantity with a plus or minus exponent
can be evaluated as the limiting value of this quantity inside the intermediate layer in the neighborhood of the
corresponding shock front. Therefore, with the aid of (1.13), regardless of the state of the medium in front and behind
the shock wave, one can calculate from (2.4) the discontinuity

& [vg,3] 855 -+ My [vi,5 + 5,58:5] = 0, (2.5)
or

(& + 21p) lvg,5l = 0, ny [va,5] = 0. (2.6)

With the aid of geometrical conditions for the compatibility of discontinuities, for ny > 0, from (2.6) we find that
the components of the tensor vy, j are continuous at the discontinuity surface under consideration. This means that the
density and stress components at all the elements are continuous at the discontinuity surface. Consequently, Z can be
solely a weak discontinuity surface. From (2.3) or (2.6), it follows that an equivoluminal strong or weak discontinuity
wave, onwhich [vs]=0or [v3’3]=0, respectively, is only possible in the special case for ny = 0. If (§4+ 2n4) = 0 then,
by virtue of the second law of thermodynamics, it is necessary that £{ = ny = 0, which is equivalent to the absence of
the first viscosity element. In this case, we arrive at the case of an internal inclusion of a system of viscosity
elements in the rheological model, which was examined in the previous paragraph.

Until now the results obtained in this paragraph were independent of whether the continuous medium is in a state
of flow at both sides of the discontinuity surface or only at one of its sides. In the following analysis, however, this
guestion is of great importance.

Let the medium be in a state of flow at both sides of the discontinuity surface and, hence, retain its
characteristics in the passage through this surface. In this case, Eq. (1.13), where ny = 1, continues to hold at both
sides of a given discontinuity surface. By substituting (1.13) into the equation of motion (1.4) and evaluating the
discontinuity procedure from this equation with allowance for (2.3) and (2.6), we arrive at the equation

51[173,33]61',3 + nl[”i,a;; + V3,33 &3] = 0. (2.7)

With the aid of the geometrical conditions for the compatibility of discontinuities, from (2.7) we find that for
1y > 0, the velocity and all its first and second derivatives are continuous at the assumed discontinuity surface. By
definition, it follows from here that the strain tensors at all the rheological elements are continuous and also the
stress tensors and their first derivatives are continuous at the elasticity and plasticity elements. By successively
differentiating (1.44) several times, each time evaluating the discontinuity procedure with allowance for (1.13), (2.3),
and (2.6) and for analogous new relations, we find that the density and the velocity, including all its derivatives, are
continuous at the assumed discontinuity surface.

Then, by definition, the strain and stress tensors, together with all their derivatives, are continuous at all the
rheological elements, i.e., there can be no extension of a discontinuity surface of any order in the case under
consideration.

If the medium is in a state of flow only at one side of the discontinuity surface, the properties of the medium
manifest themselves only at that side and in the intermediate layer. At the other side of the discontinuity surface, the
medium exhibits other properties, according to other governing equations. From here, it follows that there is little
sense in evaluating the discontinuity procedure from Eq. (1.13) and from the derivatives of this equation. Tn view of
this, only conditions (2.2) and (2.5), obtained as a result of the introduction of an intermediate layer, continue to be
valid. Conditions (2.7) and all the subsequent inferences hold no longer. Thus, in this case, the propagation of weak
discontinuities, which form an interface between the flow region of a viscous continuous medium and the stable
region [13] can occur. On these surfaces, the velocity, density, deformation of the medium, and all the first
derivatives of these quantities are continuous. For 74 = 0, an equivoluminal discontinuity surface of arbitrary order
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can also take place.

It is obvious that (1.25) remains in force, i.e., the temperature cannot be discontinuous in a heat-conducting con~
tinuous medium, '

fG= v?{, even under the condition that strain and stress tensor components at all the rheological elements are
continuous, we find from (1.8) that a density discontinuity is possible, i.e., that contact discontinuities can occur for
any type of inclusion of viscogity elements into the rheological model of a continuous medium.
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